代表性论文专著
在Taylor & Francis出版专著1部,参编英文图书3章;在美国机械工程师学会(ASME)会刊、国际电气电子工程师学会(IEEE)会刊、Friction、Tribology International、《中国科学》和《机械工程学报》等国内外学术期刊发表论文150余篇,其中SCI论文100余篇。
*****专著及章节*****
1. Zhinan Zhang, Nian Yin. Tribo-Informatics: The Systematic Fusion of AI and Tribology. CRC Press, 2024.
2. Zhinan Zhang, Yufei Ma, Ke He, Ruiqi Hu, Mingxuan Hu. Digital twin enhanced tribo-test service. Chapter 10 in Digital Twin Driven Service. 2022 Elsevier Inc
3. Zhinan Zhang, Xiang Li, Xin Wang, Hui Cheng. Decentralized cyber-physical systems: A paradigm for cloud-based smart factory of industry 4.0. Chapter 6 in Cybersecurity for Industry 4.0 – Analysis for Design and Manufacturing, Thames, L. and Schaefer, D. (Ed), Springer, 2017.
4. Zhinan Zhang, Xiang Li, Yonghong Liu Youbai Xie. Distributed Resource Environment: A Cloud-based Knowledge Service Paradigm. Chapter 3 in Cloud-Based Design and Manufacturing: A Service-Oriented Product Development Paradigm for the 21st Century, Schaefer, D. (Ed), Springer, 2014.
5. 中国机械工程学会.中国机械工程技术路线图. 北京:中国科学技术出版社,2016. 撰写13.1优质设计
6. 中国机械工程学会. 机械工程学科发展报告(摩擦学).北京:中国科学技术出版社, 2016. 陆地交通摩擦学
7. 张执南,陈实,李振. 空间角接触球轴承摩擦动力学建模与仿真. 上海: 上海交通大学出版社,2024.
*****期刊论文*****
+++组织专刊Special Issues
1. Zhang, Z., Pan, S., Raeymaekers, B. (2024). "Special Issue on Artificial Intelligence and Emerging Computational Approaches for Tribology" Friction.
2. Zhu, Y., Zhang, Z., and Sadeghi, F. (July 19, 2023). "Special Issue on Tribo-Informatics: Toward High-Efficiency Tribology Research." ASME. J. Tribol. September 2023; 145(9): 090301.
+++综述文章Review Articles
1. AI for Tribology: Present and Future. Friction, https://doi.org/10.1007/s40544-024-0879-2
2. Metal matrix nanocomposites in tribology: manufacturing, performance, and mechanisms. Friction, https://doi.org/10.1007/s40544-021-0572-7
3. Tribo-informatics approach in tribology research: A review, Friction, https://doi.org/10.1007/s40544-022-0596-7
4. Fundamental Theories and Basic Principles of Triboelectric Effect: A Review. Friction, https://doi.org/10.1007/s40544-018-0217-7
5. Research methods of contact electrification: Theoretical simulation and experiment, Nano Energy, https://doi.org/10.1016/j.nanoen.2020.105501
+++代表性论文Peer Reviewed Journal Articles
摩擦学 Tribology
1. Zhinan Zhang*, Shuaihang Pan, Nian Yin, Bin Shen, Jie Song. Multiscale analysis of friction behavior at fretting interfaces. Friction, 2021, 9(1):119–131.
2. Ke He, Shi Chen, Zhinan Zhang*. A sparse matrix-based method for rapid solving the Reynolds equation. Trans. of the ASME, Journal of Tribology, 2022, 144(5): 051803., 0.1115/1.4051862
3. Shi Chen, Ke He, Xiaojiang Cai, Zhinan Zhang*. An efficient modeling method for the simulation of ball bearing dynamics. Trans. of the ASME, Journal of Computational and Nonlinear Dynamics, 2022, https://doi.org/10.1115/1.4055314
4. Zhinan Zhang*,Zhen Li, Shuaihang Pan, Xianghai Chai. Enhanced strength and high-temperature wear resistance of Ti6Al4V alloy fabricated by laser solid forming. Trans. of the ASME, Journal of Manufacturing Science and Engineering, 2022,141: 111011 https://doi.org/10.1115/1.4054901
5. Wu Zishuai#, Yu Tongtong#, Wu, Wei, Liu, Jianxi, Zhang, Zhinan, Wang, Daoai*, Liu, Weimin. Nanotribology of SiP nanosheets: Effect of Thickness and Sliding Velocity. Friction (2022). https://doi.org/10.1007/s40544-021-0570-9
6. Mingxue Shen, Bo Li, Zhinan Zhang*, Longzhi Zhao, Guangyao Xiong*. Abrasive wear behavior of PTFE for seal applications under abrasive-atmosphere sliding condition. Friction 2020,8: 755–767.
7. Zhinan Zhang*, Jun Liu, Tonghai Wu, Youbxie Xie. Effect of carbon nanotubes on friction and wear of a piston ring and cylinder liner system under dry and lubricated conditions. Friction, 2017, 5(2): 147-154.
8. Zhinan Zhang*, Jun Liu, Youbai Xie. Design approach for optimization of piston ring profile considering mixed lubrication. Friction, 2016,4 (4):335-346.
9. Mingxue Shen, Bo Li, Dehui Ji, Guangyao Xiong*, Longzhi Zhao, Jian Zhang, Zhinan Zhang*. Effect of Particle Size on Tribological Properties of Rubber/Steel Seal Pairs Under Contaminated Water Lubrication Conditions. Tribology Letters,2020, 68:40.
10. Nian Yin, Zhinan Zhang*, Junyan Zhang. Study on friction at graphene step edges influenced by tip shape by molecular dynamics simulations. Tribology Letters, 2019, 67(3):75.
11. Mingxue Shen, Li Bo, Shengxin Li, Guangyao Xiong*, Dehui Ji, and Zhinan Zhang*. Effect of particle concentration on the tribological properties of NBR sealing pairs under contaminated water lubrication conditions. Wear,2020, 456: 203381.
12. Shi Chen, Nian Yin, Qin Yu, Zhinan Zhang*. A novel tribometer for investigating bushing wear. Wear, 2019, 430-431: 263-271.
13. Bo Zhao*, Xinqing Hu; Haifeng Li, Xianci Si, Qingbing Dong, Zhinan Zhang, Baocheng Zhang*. A new approach for modeling and analysis of the lubricated piston skirt-cylinder system with multi-physics coupling. Tribology International, 2022, 167: 107381.
14. Bo Zhao, Xiaotong Yu, Yonghui Liu, Lihua Yang, Zhinan Zhang, Baocheng Zhang, Frictional characteristics of heterostructure film composed of graphene and H-BN with the consideration of defects. Tribology International, 2021, 153:1-13.
15. Bo Zhao, Xudong Dai, Zhinan Zhang, Youbai Xie. A new numerical method for piston dynamics and lubrication analysis. Tribology International, 2016, 94: 395-408.
16. Bo Zhao, Zhinan Zhang, Congcong Fang, Xudong Dai, Youbai Xie. Modeling and analysis of planar multibody system with mixed lubricated revolute joint. Tribology International, 2016, 98: 229-241.
17. Chen Shi, Nian Yin, Xiaojiang Cai, Zhinan Zhang*. Iteration framework for solving mixed lubrication computation problems. Frontiers of Mechanical Engineering, 2021, 16(3): 635-648.
18. Shi Chen, Zhinan Zhang*. Modification of friction for straightforward implementation of friction law. Multibody System Dynamics, 2020, 48 (2), 239-257.
19. Shuaihang Pan, Zhinan Zhang*. Triboelectric effect: A new perspective on electron transfer process, Journal of Applied Physics, 2017, 122(14):14302.
摩擦信息学与机器健康Tribo-informatics
1. Zhinan Zhang*, Nian Yin, Shi Chen, Chengliang Liu. Tribo-informatics: Concept, architecture, and case study. Friction, 2021, 9(3): 642–655.
2. Ke He, Yufei Ma, Zhinan Zhang*. Tribo-Informatics Approach to Investigate the Friction and Wear of Bushings in the Variable Stator Vane System. Trans. of the ASME, Journal of Tribology,2023, 145 (12)
3. Renaldy Dwi Nugraha, Ke He, Ang Liu, Zhinan Zhang*. Short-term cross-sectional time-series wear prediction by deep learning approaches. Trans. of the ASME, Journal of Journal of Computing and Information Science in Engineering,2022, 23 (2): 021007
4. Renaldy Dwi Nugraha, Shi Chen, Nian Yin, Tonghai Wu, Zhinan Zhang*. Running-in real-time wear generation under vary working condition based on Gaussian process regression approximation, Measurement, 2021, 109599.
5. N Yin, P Yang, S Liu, S Pan, Z Zhang. AI for tribology: Present and future. Friction, 2024, 12 (6): 1060-1097.
6. Z Cai, C Li, L You, X Chen, L He, Z Cao, Z Zhang. Prediction of contact resistance of electrical contact wear using different machine learning algorithms. Friction, 2024, 12 (6):1250-1271.
7. N Yin, Z Xing, K He, Z Zhang. Tribo-informatics approaches in tribology research: A review. Friction, 2023, 11 (1): 1-22.
8. C Qin, Y Jin, Z Zhang, H Yu, J Tao, H Sun, C Liu. Anti‐noise diesel engine misfire diagnosis using a multi‐scale CNN‐LSTM neural network with denoising module. CAAI Transactions on Intelligence Technology, 2023, 8 (3): 963-986.
9. T Zhong, CJ Qin, G Shi, ZN Zhang, JF Tao, CL Liu. A residual denoising and multiscale attention-based weighted domain adaptation network for tunnel boring machine main bearing fault diagnosis. Science China Technological Sciences, 2024, 67: 2594–2618.
10. S Xu, J Lei, C Qin, Z Zhang, J Tao, C Liu. A domain-adversarial wide-kernel convolutional neural network for noisy domain adaptive diesel engine misfire diagnosis. IEEE Transactions on Instrumentation and Measurement, 2024, 73: 3506819.
设计与制造Design and Manufacturing
1. Zhinan Zhang, Ling Liu, Wei Wei, et al. A systematic function recommendation process for data-driven product and service design. Trans. of the ASME, Journal of Mechanical Design, 2017, 139(11): 111404.
2. Zhinan Zhang*,Xun Zhuge,Xiang Li,Richard Evans,Ang Liu. An object-oriented approach to the modular design of complex mechatronic systems. IEEE Transactions on Engineering Management, 2022,https://doi.org/10.1109/TEM.2022.3191438.
3. Zhinan Zhang*, Jun Liu, Richard D. Evans, Ang Liu. A Design Communication Framework based on Structured Knowledge Representation, IEEE Transactions on Engineering Management, 2021, 68 (6):1650-1662.
4. X Wang, X Shan, K Cui, Z Zhang. Digital twin enhanced agile design of ship pipeline systems. Digital Twin, 2024, 4, 1
5. Z Zhang, Y Wang, Z Zhang*, L Wang, H Huang, Q Cao. A residual reinforcement learning method for robotic assembly using visual and force information. Journal of Manufacturing Systems, 2024, 72: 245-262.
6. Wang, Xin, Nian Yin, Zhinan Zhang*. Smart design of intelligent companion toys for preschool children. AI EDAM 2021, 35(2): 151-164.
7. Zhinan Zhang*, Xin Wang, Xiaoxiao Zhu, Qixin Cao, Fei Tao. Cloud Manufacturing Paradigm with Ubiquitous Robotic System for Product Customization. Robotics and Computer Integrated Manufacturing, 2019, 60:12-22.
8. Jun Liu, Zhinan Zhang*, Richard Evans, Youbai Xie. Web Services-based knowledge sharing, reuse and integration in the design evaluation of mechanical systems. Robotics and Computer Integrated Manufacturing, 2019, 57:271-281.
9. Zhinan Zhang*, Xin Wang, Fan Cui, Xiaohan Wang, Hui Cheng. A simulation-based approach for plant layout design and production planning. Journal of Ambient Intelligence and Humanized Computing, 2019, 10(3):1217-1230.
10. Jingren Xie, Shuai Mao, Zhinan Zhang*, Chengliang Liu. Data-Driven Approaches for Characterization of Aerodynamics on Super High-Speed Elevators, Trans. of the ASME, Journal of Journal of Computing and Information Science in Engineering,https://doi.org/10.1115/1.4054869
11. Zhinan Zhang*, Gang Liu, Zhichao Jiang, Yong Chen. A Cloud-Based Framework for Lean Maintenance, Repair, and Overhaul of Complex Equipment. Trans. of the ASME, Journal of Manufacturing Science and Engineering 2015, 137(4): 040908-040908-11.
交叉学科 Interdisciplinary
1. T Wu, P Yang, X Xie, X Cao, Y Deng, X Ding, Z Zhang. Bio-inspired Hierarchical Wearable Patch for Fast Sweat Collection,Biosensors and Bioelectronics, 2024,116430
2. Pufan Yang, Gaofeng Wei*, Ang Liu, Fengwei Huo, Zhinan Zhang*. A Review of sampling, energy supply and intelligent monitoring for long-term sweat sensors, npj-Flexible Electronics, 2022, 6 (1), 1-13
3. Yilin Cai#, Shiyi Huang#, Zhinan Zhang*, Chen Xiaoxiang, Jiazheng Zhang, Xingyue Zhu, Xianting Ding*. Bio-mimic rotation microneedles for accurate transdermal positioning and ultra-minimal-invasive biomarker detection with attenuated skin deformation. spj-Research, 2022,2022: 9869734
4. Aynur Abdulla, Zhianan Zhang*, Khan Zara Ahmad, Antony R. Warden, Hengyu Li*, Xianting Ding*. Rapid and Efficient Capturing of Circulating Tumor Cells from Breast Cancer Patient’s Whole Blood via the Antibody Functionalized Microfluidic (AFM) Chip. Biosensors and Bioelectronics, 2022, 201: 113965.
5. Zhinan Zhang*, Nian Yin, Zishuai Wu, Shuaihang Pan, Daoai Wang. Research methods of contact electrification: Theoretical simulation and experiment, Nano Energy,2021,79:105501.
6. Shiwei Xu, Yange Feng, Ying Liu*, Zishuai Wu, Zhinan Zhang*, Min Feng, Sainan Zhang, Guoyun Sun, Daoai Wang*. Gas-Solid Two-Phase Flow-driven Triboelectric Nanogenerator for Wind-sand Energy Harvesting and Self-powered Monitoring Sensor. Nano Energy, 2021,85:106023.
7. Bo Zhao*, Zihao Li, Xinqin Liao, Longfei Qiao, Yiran Li, Shulin Dong, Zhinan Zhang, Baocheng Zhang. A heaving point absorber-based ocean wave energy convertor hybridizing a multilayered soft-brush cylindrical triboelectric generator and an electromagnetic generator. Nano Energy, 2021, 89: 106381.
8. Jin Kaiyuan*, Shuaihang Pan*, Tianlu Wang, Zhinan Zhang. Non-negligible corrosion process in a novel sulfur-based energy storage system. Journal of Power Sources,2021, 490: 229529.
代表性中文期刊论文
1. 潘帅航,尹念,张执南.微动界面连续干摩擦行为的分子动力学模拟[J].机械工程学报,2018,54(03):82-87.
2. 尹念,张执南,张俊彦.导电滑环Au涂层摩擦磨损行为的分子动力学模拟[J].摩擦学学报,2018,38(01):108-114.
3. 柴象海,史同承,王少辉,张执南.航空发动机风扇叶片与机匣刮蹭分析及结构设计[J].航空动力学报,2019,34(09):1879-1887.
4. 柴象海,张执南,阎军,刘传欣.航空发动机风扇叶片冲击加强轻量化设计[J].上海交通大学学报,2020,54(02):186-192.
5. 曾勇,张执南.面向环境的设计——一个创新设计的理论与方法[J].上海交通大学学报,2019,53(07):881-883.
6. 赵洋,华一雄,张执南,柴象海.基于Hertz接触理论的叶片-机匣碰摩模型[J].上海交通大学学报,2019,53(06):660-664.
7. 陈实,张执南,蔡晓江,魏新生.磨削参数对工件表面形貌及其摩擦性能的影响[J].上海交通大学学报,2018,52(05):575-581.
8. 刘郡,张执南,谢友柏.低黏度润滑油与织构对活塞环-缸套摩擦特性的影响[J].上海交通大学学报,2018,52(05):505-510.
9. 张执南.基于模型的复杂机电系统创新设计[J].科技导报,2019,37(07):68-74.
10. 陶飞,刘蔚然,刘检华,刘晓军,刘强,屈挺,胡天亮,张执南,向峰,徐文君,王军强,张映锋,刘振宇,李浩,程江峰,戚庆林,张萌,张贺,隋芳媛,何立荣,易旺民,程辉.数字孪生及其应用探索[J].计算机集成制造系统,2018,24(01):1-18.